because in the transition state the dominant 2e-3c bond of the Cu-S-Cu unit and Cu-C-Cu unit remains intact, while only the contribution of the  $\pi$ -bonding to the Cu-S bond is lost.

## Conclusion

The use of the novel monoanionic, bidentate amine-thiolate ligands  $SC_6H_3(CH(R')NMe_2)-2-R''-3$  (R' = H, R'' = H, Cl; R' = Me, R'' = H) resulted in the synthesis and characterization of trinuclear copper arenethiolates [CuSC<sub>6</sub>H<sub>3</sub>(CH(R')NMe<sub>2</sub>)- $2-R''-3]_3$ . These copper arenethiolates are soluble, and this has allowed a detailed study of their fluxional behavior in solution. The structural features of these copper arenethiolates indicate that

- (44) Block, E.; Gernon, M.; Kang, H.; Zubieta, J. Angew. Chem., Int. Ed. Engl. 1988, 27, 42
- (45) Block, E.; Kang, H.; Ofori-Okai, G.; Zubieta, J. Inorg. Chim. Acta 1990, 167, 147.

in copper thiolates with acute Cu-S-Cu angles the likely bonding description of the Cu<sub>2</sub>S unit is an sp<sup>2</sup>-hybridized sulfur atom bridging two copper atoms in an electron-deficient three-center two-electron interaction. In copper thiolates this type of bonding allows the organic group and the sulfur lone pair to exchange positions and thus provides "sulfur inversion" with a low-energy barrier.

Acknowledgment. This work was supported in part (A.L.S.) by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Scientific Research (NWO).

Supplementary Material Available: Tables S1-S6, listing fractional coordinates of all atoms, bond distances and angles, and anisotropic thermal parameters, <sup>1</sup>H NMR spectra at 223 and 353 K of 4a-d (Figure S1a-d), and a COSY 2D spectrum of 4b (Figure S2) (8 pages); a listing of observed and calculated structure factor amplitudes for 4b (9 pages). Ordering information is given on any current masthead page.

> Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60208

# Synthesis and Characterization of the New Quaternary One-Dimensional Chain Materials K<sub>2</sub>CuNbSe<sub>4</sub> and K<sub>3</sub>CuNb<sub>2</sub>Se<sub>12</sub>

Ying-jie Lu and James A. Ibers\*

Received November 9, 1990

The one-dimensional chain materials K<sub>2</sub>CuNbSe<sub>4</sub> and K<sub>3</sub>CuNb<sub>2</sub>Se<sub>12</sub> have been synthesized at 800 and 870 °C, respectively, through the use of molten alkali-metal selenides as reactive fluxes.  $K_2CuNbSe_4$  crystallizes in space group  $D_{24}^{24}$ -Fddd of the orthorhombic system with eight formula units in a cell of dimensions a = 5.745(1), b = 13.444(1), and c = 23.907(3) Å. The structure consists of infinite linear chains separated from the  $K^+$  ions. These chains, which are along the c axis, consist of edge sharing of alternating NbSe<sub>4</sub> and CuSe<sub>4</sub> tetrahedra. The structural motif thus represents an elaboration of that in KFeS<sub>2</sub>. There are no short Se-Se interactions and so formal oxidation states of K(I), Cu(I), Nb(V), and Se(-II) are assigned. The compound is a poor conductor, having a resistance greater than 10 M $\Omega$  cm at room temperature. K<sub>3</sub>CuNb<sub>2</sub>Se<sub>12</sub> crystallizes in space group C<sub>24</sub>-P2<sub>1</sub>/n of the monoclinic system with four formula units in a cell with dimensions a = 9.510 (6), b = 13.390 (9), and c = 15.334 (10) Å and  $\beta$  = 96.09 (4)°. The structure consists of an infinite Cu/Nb/Se chain separated from K<sup>+</sup> cations. The infinite chain can be formulated as  $\frac{1}{2}$  [CuNb<sub>2</sub>(Se)<sub>2</sub>(Se<sub>2</sub>)<sub>3</sub>(Se<sub>4</sub>)<sup>3-</sup>] or alternatively as  $\frac{1}{2}$  [CuNb<sub>2</sub>(Se)<sub>3</sub>(Se<sub>2</sub>)<sub>3</sub>(Se<sub>3</sub>)<sup>3-</sup>] depending upon the choice of a cutoff for the length of an Se-Se bond. In the former instance the chain contains Cu(I) and Nb(IV) centers while in the latter instance it contains Cu(I) and Nb(V) centers. The two crystallographically distinct Nb atoms are seven-coordinate and the Cu atom is tetrahedral.

# Introduction

Molten salts and high-temperature solvents have been extensively used as fluxes in the temperature range 300-1800 °C to promote crystal growth.<sup>1</sup> The majority of the compounds crystallized from these high-temperature solvents have been elements, binaries, or ternary oxides; however, binary and ternary chalcogenides have been crystallized from molten salts of the type  $A_2Q_n$  (A = alkali metal, Q = S, Se).<sup>2,3</sup> In general, these  $A_2Q_n$ fluxes are unreactive, and A is not incorporated into the final product. The use of a *reactive* flux does not appear to be a standard preparative method<sup>4</sup> for the synthesis of new compounds. But, as we first described for the  $K_2S/S$  system,<sup>5</sup> the use of a reactive flux takes advantage of low-melting A/Q systems (A = alkali metal; Q = S, Se, Te) and uses the reactive polychalcogenides  $A_2Q_n$  not only as classic fluxes but also as reactants so that the alkali metal and chalcogen and often the polychalcogen

are incorporated into the final product. This reactive flux method appears to be a general solid-state route to preparing new compounds containing polychalcogenide species.<sup>5</sup>

Until recently the new compounds synthesized with this preparative method were ternary sulfides and selenides, often with unusual structural features. These typically include chalcogen-chalcogen bonding, as in  $K_4Ti_3S_{14}^5$  ( $S_2^{2-}$ ),  $Na_2Ti_2Se_8^6$  ( $Se_2^{2-}$ ),  $KCuS_4^7$  ( $S_4^{2-}$ ), and  $KAuSe_5^8$  ( $Se_5^{2-}$ ), one-dimensional chains,<sup>5-9</sup> three-dimensional structures,<sup>9</sup> and molecular species.<sup>10</sup> While many of these reactions have been carried out at low temperatures (200-500 °C), some have been carried out at temperatures as high as 900 °C. Compounds containing polychalcogenide ligands have been made over the entire temperature range, although they may be more prevalent among the low-temperature syntheses.

In an attempt to delineate the applicability of the reactive flux method, we continue to investigate a number of potential new systems. In so doing, we have recently demonstrated that the

- Kang, D.; Ibers, J. A. Inorg. Chem. 1988, 27, 549-551. Kanatzidis, M. G.; Park, Y. J. Am. Chem. Soc. 1989, 111, 3767-3769. Park, Y.; Kanatzidis, M. G. Angew. Chem., Int. Ed. Engl. 1990, 29,
- (8) 914-915.
- Kanatzidis, M. G. Chem. Mater. 1990, 2, 353-363.

<sup>(1)</sup> Elwell, D.; Scheel, H. J. Crystal Growth from High-Temperature So-lutions; Academic Press: London, 1975.

<sup>(2)</sup> 

Scheel, H. J. J. Cryst. Growth 1974, 24, 669–673. Garner, R. W.; White, W. B. J. Cryst. Growth 1970, 7, 343–347. Hagenmuller, P. Preparative Methods in Solid State Chemistry; Aca-

<sup>(4)</sup> demic Press: New York, 1972.

<sup>(5)</sup> Sunshine, S. A.; Kang, D.; Ibers, J. A. J. Am. Chem. Soc. 1987, 109, 6202-6204.

<sup>(6)</sup> 

Schreiner, S.; Aleandri, L. E.; Kang, D.; Ibers, J. A. Inorg. Chem. 1989, (10)28, 392-393.

Table I. Crystal Data and Experimental Details

| formula                                          | K <sub>2</sub> CuNbSe <sub>4</sub> | $K_3CuNb_2Se_{12}$      |
|--------------------------------------------------|------------------------------------|-------------------------|
| fw                                               | 550.5                              | 1314                    |
| space group                                      | D <sup>24</sup> -Fddd              | $C_{2n}^{5} - P_{21}/n$ |
| a. A                                             | 5.745 (1)                          | 9.510 (6)               |
| b. Å                                             | 13.444 (1)                         | 13.390 (9)              |
| c. <b>A</b>                                      | 23.907 (3)                         | 15.334 (10)             |
| B, deg                                           | 90                                 | 96.09 (4)               |
| V, Å <sup>3</sup>                                | 1847                               | 1942                    |
| z                                                | 8                                  | 4                       |
| t. °C                                            | -1204                              | -120ª                   |
| $d(calcd), g cm^{-3} (-120 °C)$                  | 3.959                              | 4.494                   |
| $\lambda$ (Cu Ka <sub>1</sub> ), Å               | 1.540 56                           | 1.540 56                |
| $\mu,  \mathrm{cm}^{-1}$                         | 395                                | 434                     |
| transm factors <sup>b</sup>                      | 0.028-0.274                        | 0.060-0.246             |
| $R(F^2)$                                         | 0.143                              | 0.132                   |
| $R_{\mathbf{w}}(F^2)$                            | 0.206                              | 0.183                   |
| $R$ [on F for $F_{a}^{2} > 3\sigma(F_{a}^{2})$ ] | 0.080                              | 0.075                   |

<sup>a</sup>The low temperature system is based on a design by J. J. Bonnet and S. Askenazy. <sup>b</sup>The analytical method was used for the absorption correction, ref 14.

method can be applied readily to the synthesis of materials containing polytellurides.<sup>11</sup> Here we show that it may be used in the synthesis of new quaternary materials. We chose to react Nb and Cu metals with a K/Se flux. The choice of Nb was dictated by our interest in the group V metals. Cu was chosen because we have found that it has a propensity to assume an oxidation state of I and hence act as a pseudo alkali metal but with a very different coordination preference. We describe two new quaternaries in the K/Cu/Nb/Se system prepared in this manner. Each contains a one-dimensional mixed-metal chain.

#### **Experimental Section**

Syntheses. K<sub>2</sub>CuNbSe<sub>4</sub> was prepared from a reaction of K<sub>2</sub>Se<sub>5</sub> (99 mg, 0.21 mmol) with elemental Nb (39 mg, 0.42 mmol), Cu (27 mg, 0.42 mmol), and Se (50 mg, 0.63 mmol) powders (Nb, 99.8%, AESAR; Cu, 99.5%, ALFA; Se, 99.5%, Aldrich). K<sub>2</sub>Se<sub>5</sub> was made from the stoichiometric reaction of elemental K (98%, AESAR) with Se in liquid ammonia under an atmosphere of dry, oxygen-free argon. In a drybox the starting materials were loaded into a quartz tube that was subsequently evacuated to 10<sup>-4</sup> Torr and sealed. It was then placed in a furnace that was heated from room temperature to 800 °C in 12 h, kept at 800 °C for 4 days, and then slowly cooled to room temperature at a rate of 4 °C/h. Red single crystals found on the surface of the melt were suitable for X-ray diffraction analysis. A chemical analysis of four crystals selected at random was performed with the electron microprobe of an EDAX-equipped Hitachi S-570 LB scanning electron microscope, and afforded the composition K:Cu:Nb:Se = 2.1:1.0:1.0:4.2, in excellent agreement with the composition K<sub>2</sub>CuNbSe<sub>4</sub> deduced from the X-ray crystal structure determination. The yield of crystalline material approaches 50%, the other major component being  $KCu_2NbSe_4$ .<sup>12</sup> The two materials could be distinguished visually and separated by hand.

K<sub>3</sub>CuNb<sub>2</sub>Se<sub>12</sub> was synthesized from a reaction of K<sub>2</sub>Se<sub>5</sub> (199 mg, 0.42 mmol) with elemental Nb (52 mg, 0.56 mmol), Cu (17.8 mg, 0.28 mmol), and Se (99.5 mg, 1.26 mmol). The sealed tube was heated to 870 °C for 12 h and held at 870 °C for 4 days before it was slowly cooled to room temperature at a rate of 4 °C/h. EDAX analysis of the black needlelike crystals so obtained led to the composition K:Cu:Nb:Se = 2.1:1.0:2.0:12.5, in good agreement with that of K<sub>3</sub>CuNb<sub>2</sub>Se<sub>12</sub> established from the X-ray structure determination. The yield of crystalline material is close to 100%.

Crystallography. Cell constants, orthorhombic symmetry, and the space group Fddd of K2CuNbSe4 were determined from a preliminary data collection on an Enraf-Nonius CAD-4 diffractometer at -120 °C. Six standard reflections measured every 2 h during the data collection showed no significant variation in intensity. The data were collected by the  $\omega$ -2 $\theta$  technique in the range  $3^{\circ} \leq \theta(Cu K\alpha_1) \leq 75^{\circ}$ . Some crystallographic details are given in Table I. Further details may be found in Table IS. The structure was solved by direct methods. All calculations were carried out on a Stellar GS2000 computer with the use of programs standard in this laboratory.<sup>13</sup> An analytical absorption correction was



Figure 1. Projection of the structure of K<sub>2</sub>CuNbSe<sub>4</sub> down [100]. Here and in Figure 2, Cu atoms are small filled circles, Nb atoms are small open circles, and Se atoms are large open circles. The K atoms are cross-hatched circles.

applied.<sup>14</sup> Upon correction for absorption, 2215 reflections were reduced to a set of 481 unique reflections after averaging. The structure was refined on  $F_0^2$  by full-matrix least-squares methods, and involved 481 observations and 10 variables. Thermal motion was restricted to isotropic; we felt that there was little justification for anisotropic refinement of these low-temperature data collected on a highly absorbing crystal whose shape was somewhat difficult to define. The resultant isotropic thermal parameters do not suggest much, if any, disorder of the Nb and Cu sites, and for that reason the ordered model has been retained. The conventional R index R(F) for those 300 reflections having  $F_0^2 > 3\sigma(F_0^2)$ is 0.080. Final positional and thermal parameters are given in Table II. Table IIS<sup>15</sup> presents a list of structure amplitudes.

The crystal structure determination of K<sub>3</sub>CuNb<sub>2</sub>Se<sub>12</sub> proceeded in a similar manner except that the symmetry and space group were first established by precession methods and the final model involved anisotropic motion of the atoms (3925 observations, 164 variables). The value of  $R(F_0)$  for those 2407 reflections having  $F_0^2 > 3\sigma(F_0^2)$  is 0.075. The final positional and equivalent isotropic thermal parameters are given in Table III. Anisotropic thermal parameters and structure amplitudes are given in Tables IIIS and IVS.<sup>15</sup> Again, the reasonableness of the thermal parameters suggests the absence of nonstoichiometry and of substitutional disorder.

## **Results and Discussion**

 $K_2$ CuNbSe<sub>4</sub>. A projection of the structure of  $K_2$ CuNbSe<sub>4</sub> down [100] is shown in Figure 1. The K<sup>+</sup> cations, which are eightcoordinate, are well separated from the chains of anions. Table IV presents selected distances and angles. As there are no short Se-Se interactions we can assign formal oxidation states of K(I), Se(-II), Cu(I), and Nb(V). Consistent with these formal oxidation states the compound is a poor conductor, having a resistance greater than 10 M $\Omega$  cm at room temperature. The one-dimensional linear chains are infinite and consist of the sharing of tetrahedral edges by successive  $MSe_4$  tetrahedra (M = metal) (Figure 2). The X-ray scattering factors of Cu and Nb differ only modestly, and so the possibility of disorder between the Cu and Nb sites cannot be eliminated. The thermal parameters of Table I, as derived in the ordered model, are certainly reasonable. If there were significant mixing of Cu and Nb over the two sites,

<sup>(11)</sup> Keane, P. M.; Ibers, J. A. Inorg. Chem. 1991, 30, 1327-1329.
(12) Lu, Y.-j.; Ibers, J. A. J. Solid State Chem., in press.
(13) See, for example: Waters, J. M.; Ibers, J. A. Inorg. Chem. 1977, 16, 2027. 3273-3277.

<sup>(14)</sup> de Meulenaer, J.; Tompa, H. Acta Crystallogr. 1965, 19, 1014-1018.

<sup>(15)</sup> Supplementary material.

Table II. Final Positional and Isotropic Thermal Parameters for K<sub>2</sub>CuNbSe<sub>4</sub>

| atom                | Wyckoff<br>notation    | symmetry             | x                                               | у                                                                                                          | z                                                                     | B, Å <sup>2</sup>                            |
|---------------------|------------------------|----------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|
| Nb<br>Cu<br>Se<br>K | 8b<br>8a<br>32h<br>16g | 222<br>222<br>1<br>2 | $\frac{1}{8}$<br>0.368 40 (17)<br>$\frac{1}{8}$ | <sup>1</sup> / <sub>8</sub><br><sup>1</sup> / <sub>8</sub><br>0.729 19 (10)<br><sup>1</sup> / <sub>8</sub> | <sup>5</sup> /8<br><sup>1</sup> /8<br>0.182 711 (53)<br>0.445 73 (17) | 1.62 (5)<br>2.20 (8)<br>2.01 (5)<br>2.44 (8) |

**Table III.** Final Positional Parameters and Equivalent Isotropic Thermal Parameters for K<sub>3</sub>CuNb<sub>2</sub>Se<sub>12</sub>

| atom   | x              | у             | z              | B, Å <sup>2</sup> |
|--------|----------------|---------------|----------------|-------------------|
| Nb(1)  | 0.165 38 (19)  | 0.278 01 (14) | 0.07663(12)    | 1.54 (4)          |
| Nb(2)  | -0.01476 (19)  | 0.222 52 (14) | 0.273 89 (11)  | 1.48 (4)          |
| Se(1)  | -0.248 78 (25) | 0.292 36 (18) | 0.200 69 (15)  | 1.87 (5)          |
| Se(2)  | 0.067 59 (25)  | 0.33975 (18)  | -0.06436 (15)  | 1.89 (5)          |
| Se(3)  | 0.027 58 (25)  | 0.39475 (17)  | 0.17103 (15)   | 1.71 (5)          |
| Se(4)  | -0.049 49 (26) | 0.158 37 (18) | 0.10295 (15)   | 1.86 (5)          |
| Se(5)  | 0.243 06 (26)  | 0.182 56 (18) | 0.246 69 (16)  | 1.83 (5)          |
| Se(6)  | -0.138 47 (26) | 0.35819(19)   | 0.36177 (16)   | 1.89 (5)          |
| Se(7)  | 0.268 92 (26)  | 0.43395 (18)  | 0.160 59 (15)  | 1.88 (5)          |
| Se(8)  | 0.43881 (25)   | 0.271 23 (19) | 0.06611(15)    | 1.86 (5)          |
| Se(9)  | 0.16596 (29)   | 0.087 24 (18) | 0.05965 (16)   | 2.14 (6)          |
| Se(10) | -0.081 87 (27) | 0.06580 (18)  | 0.33722(16)    | 1.87 (5)          |
| Se(11) | 0.204 24 (26)  | 0.281 57 (20) | 0.371 12 (15)  | 1.97 (5)          |
| Se(12) | 0.008 22 (28)  | 0.38481 (20)  | 0.508 39 (16)  | 2.19 (6)          |
| Cu     | 0.31216 (37)   | 0.31098 (26)  | -0.078 07 (22) | 2.05 (8)          |
| K(1)   | 0.006 53 (59)  | 0.102 52 (43) | -0.160 32 (38) | 2.7 (1)           |
| K(2)   | 0.261 29 (65)  | 0.58519 (45)  | -0.008 62 (36) | 2.7 (1)           |
| K(3)   | -0.421 28 (58) | 0.08607 (38)  | 0.22473 (33)   | 2.3 (1)           |

Table IV. Selected Bond Distances (Å) and Angles (deg) for  $K_2CuNbSe_4$ 

| Nb-4Se   | 2.413 (1)  | K-2Se    | 3.460 (1)           |
|----------|------------|----------|---------------------|
| Nb-Cu    | 2.873 (1)  |          | 3.516 (4)           |
| Se-Se    | 3.921 (3)  |          | 3.523 (2)           |
|          | 3.929 (2)  |          | 3.643 (4)           |
|          | 3.932 (3)  | Cu-4Se   | 2.457 (1)           |
|          | 3.958 (3)  |          |                     |
| Se-Cu-Se | 106.27 (5) | Se-Nb-Se | 109.02 (6)          |
|          | 110.50 (6) |          | 109.16 (5)          |
|          | 111.69 (6) |          | 11 <b>0.24 (6</b> ) |
|          |            |          |                     |

then one would expect a large thermal parameter for Nb and a small one for Cu when the ordered model was refined. Such is not the case. Moreover, the metal-metal distance is very short (2.873(1) Å), and hence the drive toward maximum charge separation would favor the ordered model. An analogous Cu/Mo chain<sup>16</sup> is found in [NH<sub>4</sub>][CuMoS<sub>4</sub>].<sup>17,18</sup> The question of Cu/Mo disorder in these chains is complicated by the need to establish the direction of the polar crystallographic axis. The disordered model was chosen, but the statistical evidence in its favor is minimal. Of course, order-disorder in these systems may depend upon subtle preparative differences. Such differences are not subtle in this instance, as the present compound was grown from a high-temperature melt whereas [NH<sub>4</sub>][CuMoS<sub>4</sub>] was prepared at room temperature by solution methods. If we accept the ordered model, then the chains in K<sub>2</sub>CuNbSe<sub>4</sub> are an elaboration of those in  $SiS_2^{19}$  and in KFeS<sub>2</sub><sup>20,21</sup> where there are infinite edge-shared  $SiS_4$  and  $FeS_4$  tetrahedra, respectively.

Both the Cu and Nb atoms have crystallographically imposed 222 symmetry. Consequently each must have a single M-Se distance and each has three independent Se-M-Se angles. The Cu-Se distance is 2.457 (1) Å, and the Se-Cu-Se angles are 106.27 (5), 110.50 (6), and 111.69 (6)°. The Nb-Se distance is 2.413 (1) Å, matching well with that of  $K_3NbSe_4^{22}$  (Nb-Se,

- (18) Redman, M. J. Inorg. Synth. 1973, 14, 95-97.
- (19) Peters, J.; Krebs, B. Acta Crystallogr. 1982, B38, 1270-1272.
   (20) Boon, J. W.; MacGillavry, C. H. Recl. Trav. Chim. Pays-Bas 1942, 61, 910-917.
- (21) Bronger, W.; Müller, P. J. Less-Common Met. 1984, 100, 241-247.

Table V. Selected Distances (Å) and Angles (deg) for  $K_3CuNb_2Se_{12}$ 

| 140(1)~140(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.700 (3)            | <b>K</b> (1)-SC(1)                  | 3.004 (7) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------|-----------|
| Nb(1)-Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.911 (5)            | K(1)-Se(2)                          | 3.523 (7) |
| Nb(2)–Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.976 (5)            | K(1)-Se(4)                          | 3.615 (7) |
| Nb(1)-Se(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.407 (3)            | K(1) - Se(5)                        | 3.979 (6) |
| Nb(1)-Se(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.580 (3)            | K(1) - Se(6)                        | 3.398 (6) |
| Nb(1)-Se(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.661(3)             | K(1) - Se(7)                        | 3 401 (6) |
| Nb(1) - Se(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.001 (3)            | $K(1) = S_{0}(0)$                   | 3 474 (7) |
| Nb(1) - Sc(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.520(3)             | K(1) = Sc(9)                        | 2.564 (6) |
| NU(1) - Se(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.392(3)             | K(1) - Se(9)                        | 3.334 (0) |
| ND(1)-Se(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.624 (4)            | K(1) - Se(10)                       | 3.656 (7) |
| Nb(1)-Se(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.568 (4)            | K(1) - Se(11)                       | 3.347 (7) |
| Nb(2)-Se(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.561 (3)            | K(2)-Se(1)                          | 3.362 (6) |
| Nb(2)-Se(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.847 (3)            | K(2)-Se(2)                          | 3.576 (7) |
| Nb(2)-Se(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.745 (3)            | K(2)-Se(2)                          | 3.820 (7) |
| Nb(2)-Se(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.586 (4)            | K(2) - Se(3)                        | 3.517 (6) |
| Nb(2)-Se(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.615 (3)            | K(2) - Se(7)                        | 3,286 (6) |
| Nb(2) - Sc(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 426 (3)            | K(2) - Se(8)                        | 3 625 (7) |
| Nb(2) - So(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.420(3)             | $K(2) = S_{2}(10)$                  | 3 917 (6) |
| $C_{11} = S_{21} = S$ | 2.333 (3)            | K(2) = Se(10)                       | 3.617(0)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.369 (5)            | K(2) - Se(10)                       | 3.330 (7) |
| Cu-Se(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.509 (5)            | K(2) - Se(11)                       | 3.365 (7) |
| Cu-Se(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.461 (4)            | K(3)-Se(1)                          | 3.253 (6) |
| Cu-Se(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.388 (4)            | K(3)-Se(2)                          | 3.396 (6) |
| Se(1)-Se(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.726 (3)            | K(3)-Se(3)                          | 3.238 (6) |
| Se(3)-Se(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.376 (4)            | K(3) - Se(5)                        | 3.493 (6) |
| Se(4)-Se(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.416(4)             | K(3) - Se(6)                        | 3,399 (6) |
| Se(5) - Se(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 384 (4)            | K(3) - Sc(8)                        | 3 626 (6) |
| Se(5) - Se(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.507(4)             | K(3) = Sc(0)                        | 3 505 (6) |
| Se(0) - Se(12)<br>Se(0) - Se(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.342(3)             | K(3) = Sc(10)                       | 3.303(0)  |
| Se(8) - Se(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.389 (4)            | K(3) - Se(12)                       | 3.337 (0) |
| Se(2) = Cu = Se(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1136(2)              | Se(1) - Nb(2) - Se(6)               | 63 5 (1)  |
| Se(2) = Cu = Se(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110.0(2)             | Se(4) = Nb(2) = Se(0)               | 746(1)    |
| Se(2) - Cu - Se(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110.1(2)             | $S_{2}(4) = 140(2) = S_{2}(3)$      | 97 5 (1)  |
| Se(0) = Cu = Se(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>72.4</b> (1)      | Se(5) = I + U(2) - Se(3)            | 33.3(1)   |
| Se(10) = Cu = Se(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114.0(2)             | Se(3) - NO(2) - Se(4)               | /8.5 (1)  |
| Se(10)-Cu-Se(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108.5 (2)            | Se(5)-Nb(2)-Se(6)                   | 135.5 (1) |
| Se(10)-Cu-Se(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 116.3 (2)            | Se(6) - Nb(2) - Se(3)               | 79.7 (1)  |
| Se(2)-Nb(1)-Se(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97.2 (1)             | Se(6)-Nb(2)-Se(4)                   | 134.0 (1) |
| Se(2)-Nb(1)-Se(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 96.5 (1)             | Se(10)-Nb(2)-Se(1)                  | 103.8 (1) |
| Se(2)-Nb(1)-Se(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170.7 (1)            | Se(10)-Nb(2)-Se(3)                  | 168.9 (1) |
| Se(2) - Nb(1) - Se(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 105.1 (1)            | Se(10) - Nb(2) - Se(4)              | 95.8 (1)  |
| Se(2) - Nb(1) - Se(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 104.3 (1)            | Se(10) - Nh(2) - Se(5)              | 100.4 (1) |
| Se(2) - Nh(1) - Se(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 104 8 (1)            | Se(10) - Nb(2) - Se(6)              | 104.0 (1) |
| Se(3) = Nb(1) = Se(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 805(1)               | $S_{0}(10) = Nb(2) = S_{0}(1)$      | 104.0(1)  |
| Se(3) = I + U(1) = Se(4)<br>Se(3) = N + (1) = Se(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80.5(1)              | $S_{2}(10) = N_{10}(2) = S_{2}(11)$ | 120 A (1) |
| Se(3) = NO(1) - Se(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 62.0 (1)             | Se(11) - Nb(2) - Se(1)              | 139.4 (1) |
| Se(3) - ND(1) - Se(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54.7(1)              | Se(11) - Nb(2) - Se(3)              | 85.3 (1)  |
| Se(3)-Nb(1)-Se(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 128.4 (1)            | Se(11) - Nb(2) - Se(4)              | 131.5 (1) |
| Se(4)-Nb(1)-Se(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74.2 (1)             | Se(11)-Nb(2)-Se(5)                  | 55.3 (1)  |
| Se(7)-Nb(1)-Se(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 131.8 (1)            | Se(11)-Nb(2)-Se(6)                  | 82.4 (1)  |
| Se(7)-Nb(1)-Se(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82.1 (1)             | Cu-Se(6)-Nb(2)'                     | 71.0 (1)  |
| Se(7)-Nb(1)-Se(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74.4 (1)             | Cu-Se(10)-Nb(2)'                    | 76.4 (1)  |
| Se(8) - Nb(1) - Se(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140.4 (1)            | Cu-Se(2)-Nb(1)                      | 74.7 (1)  |
| Se(8) - Nh(1) - Se(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 832(1)               | Cu-Se(8)-Nb(1)                      | 69.8 (1)  |
| Se(9) - Nh(1) - Se(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 131 8 (1)            | $Nh(1) = S_{2}(2) = Nh(2)$          | 860(1)    |
| $S_{e}(0) = Nb(1) = S_{e}(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 550(1)               | Nb(1) = Sc(3) = Nb(2)               | 966(1)    |
| $S_{0}(3) = 140(1) = 30(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55.0 (I)<br>60 7 (I) | ND(1) - SC(4) - ND(2)               | 00.0(1)   |
| Se(9)-IND(1)-Se(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 09.7(1)              | ND(1) - Sc(5) - ND(2)               | 84.2 (1)  |
| Se(9) - Nb(1) - Se(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 147.9 (1)            | ND(1)-ND(2)-Cu'                     | 173.6 (1) |
| Se(9)-Nb(1)-Se(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86.9 (1)             | Nb(1)-Cu-Nb(2)'                     | 161.9 (1) |
| Se(1)-Nb(2)-Se(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68.2 (1)             | Nb(2)-Nb(1)-Cu                      | 177.0 (1) |
| Se(1)-Nb(2)-Se(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71.6 (1)             | Se(6)-Se(12)-Se(8)                  | 93.3 (1)  |
| Se(1)-Nb(2)-Se(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 143.1 (1)            | Se(12)-Se(6)-Se(1)                  | 165.7 (1) |

2.387 (1)-2.403 (1) Å), and the Se-Nb-Se angles are 109.02 (6), 109.16 (5), and 110.24 (6)°. Interestingly, the edge sharing of the tetrahedra leads to a Nb-Cu distance of only 2.873 (1) Å, slightly longer than that in  $Cu_xNbSe_2^{23}$  (Nb-Cu, 2.81 Å).

 $K_3CuNb_2Se_{12}$ . The structure consists of an infinite Cu/Nb/Se chain separated from K<sup>+</sup> cations. Figure 3 shows part of an

Bensch, W.; Stauber-Reichmuth, G.; Reller, A.; Oswald, H. R. Rev. Chim. Miner. 1987, 24, 503-508.
 Binnie, W. P.; Redman, M. J.; Mallio, W. J. Inorg. Chem. 1970, 9,

 <sup>(17)</sup> Binnie, W. P.; Redman, M. J.; Mallio, W. J. Inorg. Chem. 1970, 9, 1449-1452.

<sup>(22)</sup> Latroche, M.; Ibers, J. A. Inorg. Chem. 1990, 29, 1503-1505.

<sup>(23)</sup> Voorhoeve-van den Berg, J. M. J. Less-Common Met. 1972, 26, 399-402.



Figure 2. Anionic chains in K2CuNbSe4.



Figure 3. Infinite chain in K<sub>3</sub>CuNb<sub>2</sub>Se<sub>12</sub> with labeling scheme.

anionic chain, along with the labeling scheme. The compound is a new infinite, mixed-metal chain structure. This complex one-dimensional chain -[-Cu-Nb-Nb-] extends parallel to [101]. The Cu atom has distorted tetrahedral coordination with Cu-Se distances ranging from 2.388 (4) to 2.509 (5) Å and Se-Cu-Se angles varying from 92.4 (1) to 116.3 (1)° (Table V). Both crystallographically independent Nb atoms are seven-coordinate with Nb-Se distances ranging from 2.407 (3) to 2.928 (3) Å for atom Nb(1) and 2.426 (3) to 2.847 (3) Å for atom Nb(2). These are comparable with those in Nb<sub>8</sub>PtSe<sub>20</sub><sup>24</sup> (Nb-Se, 2.58 (1)-2.77 (1) Å).

In Figure 3, we have drawn as bonds all Se-Se interactions less than 2.75 Å. Consequently, the chain, as drawn, is

(24) Sunshine, S. A.; Ibers, J. A. J. Solid State Chem. 1987, 71, 29-33.

 ${}^{1}_{\infty}$ [CuNb<sub>2</sub>(Se)<sub>2</sub>(Se<sub>2</sub>)<sub>3</sub>(Se<sub>4</sub>)<sup>3-</sup>] with atoms Se(1), Se(6), Se(12), and Se(8) making up the Se,2- ligand that has five metal-selenium bonds. This formulation leads to formal oxidation states of Cu(I) and Nb(IV). The Se42~ ligand, though common in molecular species,<sup>25</sup> is uncommon in solid-state structures, although with a different metal-selenium bonding scheme it is found in KCuSe<sub>4</sub><sup>7</sup> and in  $[Ag(Se_4)]_n^{n-26}$  Of the Se-Se interactions drawn in Figure 3, that of 2.726 (3) Å between atoms Se(1) and Se(6) is the longest. If one chooses to limit Se-Se interactions to distances less than 2.55 Å (Se(6)–Se(12) = 2.542 (3) Å), then the chain may be described as [[CuNb<sub>2</sub>(Se)<sub>3</sub>(Se<sub>2</sub>)<sub>3</sub>(Se<sub>3</sub>)<sup>3-</sup>] with atoms Se(6), Se(8), and Se(12) making up the Se<sub>3</sub><sup>2-</sup> ligand. This formulation leads to formal oxidation states of Cu(I) and Nb(V). Such an  $Se_3^{2-}$  species is rare in solid-state structures but is found in  $K_3AuSe_{13}^8$  and in a number of molecular species.<sup>25</sup> Se-Se interactions as long as 2.663 Å have been described as bonds, e.g. in  $Nb_2Se_9$ .<sup>27</sup> There is thus arbitrariness to the assignment of formal oxidation states in the present chain. Nevertheless, it appears that in the synthesis of both K<sub>3</sub>CuNb<sub>2</sub>Se<sub>12</sub> and K<sub>2</sub>Cu-NbSe, Cu has not been oxidized to its highest oxidation state and that the  $\operatorname{Se}_n^{2-}(n=3,4)$  species can exist at temperatures above 800 °C.

The present study demonstrates that new materials, in this instance new quaternaries, can be made with the use of the reactive flux method. This, along with its extension to tellurides,<sup>11</sup> greatly increases the utility of the method in the synthesis of new materials. The present quaternaries, though both members of the relatively small class of one-dimensional materials, show drastically different structural features. Interestingly, a common feature is the presence of Cu(I) in both systems.

Acknowledgment. Use was made of the X-ray and scanning electron microscope facilities of the Northwestern University Materials Research Center supported under the NSF-MRL program (Grant DMR-88-21571). This research was supported by the National Science Foundation (Grant DMR-88-13623).

**Registry No.**  $K_2$ CuNbSe<sub>4</sub>, 134756-49-3;  $K_3$ CuNb<sub>2</sub>Se<sub>12</sub>, 135041-37-1;  $K_2$ Se<sub>5</sub>, 134629-64-4; K, 7440-09-7; Se, 7782-49-2; Nb, 7440-03-1; Cu, 7440-50-8.

Supplementary Material Available: Complete crystallographic details for both compounds (Table IS) and anisotropic thermal parameters for  $K_3CuNb_2Se_{12}$  (Table IIIS) (3 pages); structure amplitudes for both compounds (Table IIS and IVS) (18 pages). Ordering information is given on any current masthead page.

(25) Ansari, M. A.; Ibers, J. A. Coord. Chem. Rev. 1990, 100, 223-266.
 (26) Kanatzidis, M. G.; Huang, S.-P. J. Am. Chem. Soc. 1989, 111, 760-761.

(27) (a) Meerschaut, A.; Guémas, L.; Berger, R.; Rouxel, J. Acta Crystallogr. 1979, B35, 1747-1750.
 (b) Sunshine, S. A.; Ibers, J. A. Acta Crystallogr. 1987, C43, 1019-1022.